'
~ -
.‘ ’-
T

®
H

1. CITP protocol suite specification

11

1.2

History

2007-09-16
2007-09-28
2008-01-25
2008-05-28
2008-08-21
2008-10-11
2008-11-08
2009-02-14
2009-02-18
2009-05-17
2009-06-23
2009-11-27
2010-06-12
2010-08-29
2011-07-20
2012-05-02

Revised documentation into a single document.

Added first comments for MSEX revision, highlighted in red.

Cleaned up MSEX 1.1 changes for element libraries.

Minor corrections and clarifications in MSEX.

Completed MSEX element types 4 - 8, accompanied by the Generic Element Information packet.
Added BSR E1.31 to the DMX connection strings table.

Added first OMEX packet suggestions.

OMEX packet suggestion update and general revision of the introduction section.

Removed deprecation note of PINF/PNam as it does have its use (with clarifying comments).
Added note regarding problems with MSEX/GLEI message.

Clarified the note regarding contiguous element identifiers.

Added first draft of MSEX 1.2 extensions.

MSEX 1.2 finalized.

Clarified the role of the PNam message.

Added FINF SPos and Posi message suggestions.

Clarified MSEX image formats.

Introduction

The CITP (Controller Interface Transport Protocol) is a dual layer protocol suite that has been designed for
communication between lighting consoles, media servers and visualizers. This document describes how it is
used on top of an IP stack, but the packets could easily be used over other media as well, such as USB links.

The top layer, CITP, consists of a single message header with content information and support for fragmentation
and stream synchronization. This message header is used in the beginning of all CITP protocol suite packets.

The second layer of CITP consists of the PINF, SDMX, FPTC, FSEL, FINF, MSEX and OMEX protocols. Each of
these have been designed for a specific purpose, but some of them are closely related (such as FPTC, FSEL
and FINF that all operate on a given set of lighting fixtures). Any manufacturer can extend the CITP protocol at
the second layer level using a non-reserved layer identifier.

Lighting Console / Media Server / Visualizer

PINF SDMX FPTC

TCP

IP

UDP

FSEL FINF OMEX MSEX

CITP
(IPX)

(RS232) (MIDI) (USB)

The layers of CITP and surrounding layers

1.3 Lighting console behaviour
Datagram (UDP) socket, port 4809, joined to multicast address 224.0.0.180:

- Regularly send a CITP/PINF/PLoc message with no listening port.

- Receive CITP/PINF/PLoc messages to be aware of available visualizers and media servers.

- Connect either automatically or on user demand to an available visualizer and/or media server.

- Receive CITP/MSEX/StFr Stream Frame video content from media server video subscriptions.

For all TCP connections to a media server:

- Send CITP/PINF/PNam message immediately after connecting.

- Send CITP/MSEX/CInf Client Information message immediately after connecting.

- Receive CITP/MSEX/SInf Server Information and CITP/MSEX/LSta layer status messages.

- Send CITP/MSEX/GELI Get Element Library Information message(s) and initiate element library update.
Request all libraries of relevant type to the media server in question (as identified by the CITP/PINF/PLoc Name
field).

- Send CITP/MSEX/GVsr Get Video Sources message to retrieve information about available video feeds.
For all TCP connections to a visualizer:
- Send CITP/PINF/PNam message immediately after connecting.

- Send a CITP/SDMX/UNam Universe Name for each DMX universe controlled to provide display names.
- Either Send CITP/SDMX/ChBk Channel Block messages with DMX data,

- or Send a CITP/SDMX/SXSr Set External Source message to specify an alternative DMX transfer method.
- Receive CITP/SDMX/ChBk messages for "autofocus" purposes.

- Send and receive CITP/FPTC, CITP/FSEL and CITP/FINF messages when fit.

1.4 Media server behaviour

TCP listening socket on any (known) port:

- Accept incoming connections from any lighting console or visualizer. If the media server can only handle a
limited number of simultaneous connections then it should actively refuse any further connection attempts.
Datagram (UDP) socket, port 4809, joined to multicast address 224.0.0.180:

- Regularly send a CITP/PINF/PLoc message containing the port on which the listening socket is listening.
For all accepted incoming TCP connections from a lighting console or visualizer:

- Send CITP/PINF/PNam message immediately after connecting.

- Send a CITP/MSEX/SInf Server Information message (MSEX 1.0 or MSEX 1.1).

- Receive CITP/MSEX/CInf Client Information message from lighting console and respond with a
CITP/MSEX/SInf Server Information message (MSEX 1.2 or later).

- Regularly send a CITP/MSEX/LSta Layer Status message.

- Receive and respond to CITP/MSEX element library browsing messages.

- Send CITP/MSEX element library information messages on library changes.

- Receive and respond to CITP/MSEX video stream browsing and subscription messages.

1.5 Visualizer behaviour

TCP listening socket on any (known) port:
- Accept incoming connections from any lighting console.

Datagram (UDP) socket, port 4809, joined to multicast address 224.0.0.180:

- Regularly send a CITP/PINF/PLoc message containing the port on which listening socket is listening.
- Receive CITP/PINF/PLoc message to be aware of available media servers.

- Connect either automatically or on user demand to an available media server.

- Receive CITP/MSEX/StFr Stream Frame video content from media server video subscriptions.
For all accepted incoming TCP connections from a lighting console:

- Send CITP/PINF/PNam message immediately after connecting.

- Receive CITP/SDMX/UNam Universe Name messages.

- Receive CITP/SDMX/ChBk messages with DMX data.

- Optionally support CITP/SDMX/SXSr messages and receive DMX data over other protocols.
- Send CITP/SDMX/ChBk messages for "autofocus" purposes.

- Send and receive CITP/FPTC, CITP/FSEL and CITP/FINF messages when fit.

For all TCP connections to a media server:

- Send CITP/PINF/PNam message immediately after connecting.

- Send CITP/MSEX/CInf Client Information message immediately after connecting.

- Receive CITP/MSEX/SInf Server Information and CITP/MSEX/LSta layer status messages.

- Send CITP/MSEX/GVSr Get Video Sources message to retrieve information about available video feeds.

1.6 Device status / Operations management servers

Work in progress.

1.7 General IP notes and hints

PC based applications must choose listening ports and set socket address reusability flags as necessary to avoid
blocking eachother when run on the same network interface. Achieve this by calling listen() for port 0 and
retrieving the port chosen by the operating system with getsockname(), and by setting the SO_REUSEADDR
(and possibly also SO_REUSEPORT) option on the multicast socket before joining the multicast address.

To join a multicast address, use setsockopt() with IPPROTO_IP and IP_ADD_MEMBERSHIP.

2. Definitions

These specifications target lighting software developers. It contains C style types and annotation, although
mostly on a pseduo-code level.

2.1 Data types

All structures and variables of CITP use little endian byte order (least significant byte first, "PC standard") and
1-byte packing of C-structures.

int8, intl6, int32, int64 /I 8-bit, 16-bit, 32-bit and 64-bit signed integers

uint8, uintl6, uint32, uint64 /I 8-bit, 16-bit, 32-bit and 64-bit unsigned integers

ucsl, ucs2 /I 8-bit and 16-bit unicode characters (character types
correspond to uint8 and uint16)

fl oat 32 /I 32-bit IEEE floating point (8-bit exp., 23-bit mant.)

fl oat 64 // 64-bit IEEE floating point (11-bit exp., 52-bit mant.)

Open arrays of ucsl or ucs2 are null terminated strings.

2.2 Cookies

The Cookie (and ContentType) fields can be found in CITP headers in both layers. The constant values of these
fields are documented using string notation, for instance “CITP” for the CITP header Cookie field. This should be
interpreted as sending ‘C",'I','T",'P’ over the network.

2.3 DMX Connection Strings

Instead of defining constants and fixed field for various DMX source protocols, a connection string approach is
used instead. The following table illustrates well-defined DMX connection strings in CITP:

Protocol Format Examples

ArtNet "ArtNet/<net>/<universe> "ArtNet/0/0/1" - The first channel of the first universe on the
/<channel>" first network.

Avab IPX "AvablPX/<net>/<universe> "AvablPX/0/0/1" - The first channel of the first universe on
/<channel>" the first network.

BSR E1.31 "BSRE1.31/<universe>/<channel>" "BSRE1.31/0/1" - The first channel of the first universe.
ETC Net2 "ETCNet2/<channel>" "ETCNet2/1" - The first ETCNet2 channel.

3. CITP, base layer

The base layer as such does not define any packages, it merely adds a header that encapsulate all messages.

3.1 Header definitions

3.1.1 The CITP header

The CITP layer provides a standard, single, header used at the start of all CITP packets:

struct Cl TP_Header

{
ui nt 32
uint8
uint8
uni on
{
ui nt 16
uint 16
}s
ui nt 32

uint16

uint16
ui nt 32

}s

Cooki e;
Ver si onMaj or;
Ver si onM nor ;

Request | ndex;
| nResponseTo;

MessageSi ze;

this header.
MessagePar t Count ;
MessagePart ;
Cont ent Type;

(the name of the second layer).

/I Set to "CITP".
/l Setto 1.
/I Setto 0.

/I See below

/I See below

/I The size of the entire message, including
/I Number of message fragments.

/I Index of this message fragment (0-based).
/I Cookie identifying the type of contents

Requestindex/InResponseTo: These allow request/response message pairs to be better associated and is
particularly useful for debugging purposes. A node that sends request messages (such as a Lighting Console
requesting info from a Media Server) should maintain a request counter, and increment this with every request
message sent. When the other side sends a response to a specific request message, it should set this field to the
same value as was found in the corresponding request message. The value of 0 is taken to mean ‘ignored’, so
proper Requestindex values should start at 1 (and wrap back around to 1, avoiding the 0 ‘'ignored' value). This
was introduced for MSEX 1.2 and was previously a reserved 2-byte alignment field.

Note: Receipt of any unrecognised or unsupported messages must not be treated as an error condition.

4. CITP/PINF, Peer Information layer

The Peer Information layer is used to exchange peer information, both when connected and when locating peers
on the network.

The PINF/PNam message was previousley broadcasted on UDP port 4810, but that behaviour has now been
deprecated. Instead, the PINF/PLoc message is multicasted on address 224.0.0.180, port 4809. Do note that it is
a good idea to send a PINF/PName message as a first over any established connection!

4.1 Header definitions

4.1.1 The PINF header
The PINF layer provides a standard, single, header used at the start of all PINF packets:

struct Cl TP_PI NF_Header

Cl TP_Header Cl TPHeader ; /I The CITP header. CITP ContentType is "PINF".
ui nt 32 Cont ent Type; /I A cookie defining which PINF message it is.

4.2 Message definitions

4.2.1 PINF / PNam - Peer Name message

The PeerName message provides the receiver with a display name of the peer. In early implementations of CITP,
the PNam message was broadcasted as a means of locating peers - now the PLoc message is multicasted
instead. The PNam message is still useful though, as a message transferred from a peer connected to a listening
peer.

struct Cl TP_PI NF_PNam

Cl TP_PI NF_Header Cl TPPI NFHeader ; /I The CITP PINF header. PINF ContentType is "PNam".
ucsl Nane[]; /I The display name of the peer (null terminated).
This could be anything from a
/I user defined alias for the peer of the name of the
product, or a combination.

I

4.2.2 PINF / PLoc - Peer Location message

The PeerLocation message provides the receiver with connectivity information. If the ListeningTCPPort field is
non-null, it may be possible to connect to the peer on that port using TCP. If the peer can only handle a limited
number of simultaneous connections, then additional connections should be actively refused. The Type field
instructs the receiver what kind of peer it is and the Name and State fields provide display name and information.

struct Cl TP_PI NF_PLoc
{

Cl TP_PI NF_Header Cl TPPI NFHeader ; /I The CITP PINF header. PINF ContentType is "PLoc".

uint16 Li st eni ngTCPPort ; /I The port on which the peer is listening for
incoming TCP connections. 0 if not listening.

ucsl Type[]; /I Can be "LightingConsole", "MediaServer",
"Visualizer" or "OperationHub".

ucsl Nane[]; /I The display name of the peer. Correspons to the
PINF/PNam/Name field.

ucsl State[]; /I The display state of the peer. This can be any

descriptive string presentable to the user such
as "ldle", "Running" etc.

5. CITP/SDMX, Send DMX layer

The SDMX layer is used to transmit DMX information. CITP supports transmitting a single - wide - universe of
DMX channels with at most 65536 channels. It also supports designating an alternative DMX source such as
ArtNet or ETCNet2 (see "connection strings” in the Definitions section).

5.1 Header definitions

5.1.1 The SDMX header
The SDMX layer provides a standard, single, header used at the start of all SDMX packets:

struct Cl TP_SDMX Header

{
Cl TP_Header Cl TPHeader ; /I CITP header. CITP ContentType is "SDMX".
ui nt 32 Cont ent Type; /I Cookie defining which SDMX message it is.

5.2 Message definitions: Transfer of DMX channel levels

5.2.1 SDMX/ Enld - Encryption Identifier message

The Encryptionldentifier message is used to agree on encryption schemes when transferring DMX channels. The
usage of this message depends completely on the peers communicating it; the contents and results of this
message is not part of the CITP specification - it must be agreed upon a priori.

struct Cl TP_SDMX Enld

{
Cl TP_SDMX_Header Cl TPSDMXHeader ; /I CITP SDMX header. SDMX ContentType is "Enld".
ucsl ldentifier[]; /I Encryption scheme identifier.

5.2.2 SDMX / UNam - Universe Name message

The Universe Name message can be sent by a DMX transmitting peer in order to provide the other end with a
displayable name of a universe.

struct Cl TP_SDMX_UNam
{

Cl TP_SDMX_Header Cl TPSDMXHeader ; /I CITP SDMX header. SDMX ContentType is "UNam".
uint8 Uni ver sel ndex; /I 0-based index of the universe.
ucsl Uni ver seNane[] ; /I Name of the universe.

5.2.3 SDMX/ ChBk - Channel Block message

The Channel Block message transmits raw DMX levels to the recipient. How to handle Blind DMX levels is up to
the recipient, but the recommended procedure for a visualizer is to switch over to blind DMX whenever such is
present and to revert back after some short timeout when it is no longer transmitted.

struct Cl TP_SDMX_ChBk
{

Cl TP_SDMX_Header Cl TPSDMXHeader ; /I CITP SDMX header. SDMX ContentType is "ChBK".
uint8 Bl i nd; /I Set to 1 for blind preview dmx, O otherwise.

uint8 Uni ver sel ndex; /I 0-based index of the universe.

uint16 Fi r st Channel ; /I 0-based index of first channel in the universe.
uint16 Channel Count ; /I Number of channels.

uint8 Channel Level s[]; /I Raw channel levels.

5.3 Message definitions: Alternate DMX source management

5.3.1 SDMX / SXSr - Set External Source message

The Set External Source message can be sent as an alternative to the ChBk message above, when DMX should
be tapped from another protocol on the other end. In the event of handling multiple universes, the external
source specified should be treated as the base universe of a consecutive series.

struct Cl TP_SDMX_SXSr
{
Cl TP_SDMX_Header Cl TPSDMXHeader ; /I CITP SDMX header. SDMX ContentType is "SXSr".
ucsl ConnectionString[]; /Il DMX-source connection string. See DMX
Connection Strings in Definitions.

6. CITP/FPTC, Fixture patch layer

The Fixture Patch layer is used to communicate fixture existence and patch information. Fixtures are identified by
16-bit unsigned integeres with a range of valid values between 1 and 65535. In most consoles this value maps
directly to a "Channel”, "Unit" or "Device".

The FPTC layer is built on the following design decisions:

e Unpatched fixtures do not exist from the FPTC layers’s point of view. When a fixture is unpatched using

the UnPatch message, it is deleted and seizes to exist. However, the fixture may continue to live in the
visualizer or the console, without association to a universe. Whenever the fixture is associated with a
universe again, it is reintroduced through the Patch message.

® When a fixture is repatched (ie moved to another channel or universe) it does not pass through an

unpatched state.

® |n the visualizer, it may possible to change the mode of a fixture. Different modes for one fixture usually

use different amounts of channels, however sometimes a different mode only changes the interpretation of
one or more control channels. When a mode is changed in the visualizer, an unpatch message is not sent,
only a new patch message. If the new mode consumes a different amount of channels, this can be told by
the ChannelCount field of the patch message. If it does not, there is no way of telling.

e Afixture can change its patch and mode, but never its make or name. The visualizer attempts to map the

fixture make and name against its library.

® Fixture identifiers must be persistent. When both the visualizer and the console have reloaded a pair of

matching projects, the fixture identifiers must still be the same.

® When a project is closed on either side, fixtures are not unpatched. The same applies to when a universe

in the visualizer is deleted or unassociated with a console.

® No synchronisation mechanism exists in CITP, which communicates project closing/opening information.

This must be handled by the user by opening and closing matching projects simultaneously.

® When the visualizer or console takes automatic actions as a result of incoming patch messages, it must

not result in an echo.

6.1 Header definitions

6.1.1 The FPTC header
The FPTC layer provides a standard, single, header used at the start of all FPTC packets:

struct Cl TP_FPTC Header

Cl TP_Header Cl TPHeader ; /I The CITP header. CITP ContentType is "FPTC".
ui nt 32 Cont ent Type; /I A cookie defining which FSEL message it is.
ui nt 32 Content H nt; /I Content hint flags.

// 0x00000001 Message part of a sequence of messages.
// 0x00000002 Message part of and ends a sequence of
messages.

6.2 Message definitions

6.2.1 FPTC / Ptch - Patch message

Patch messages are sent when fixtures are introduced or repatched. The patch message contains the identifier
of the fixture added, the sender fixture (library) type make and name of the fixture added and the patching
information..

struct CI TP_FPTC Ptch

{

Cl TP_FPTC _Header Cl TPFPTCHeader ; /I The CITP FPTC header. FPTC ContentType
is "Ptch".

ui nt 16 Fi xturel dentifier; /I Fixture identifier.

uint8 Uni ver se; /I Patch universe (0-based).

uint8 Reserved[1] ; /I 4-byte alignment.

ui nt 16 Channel ; /l Patch channel (0-based).

ui nt 16 Channel Count ; /l Patch channel count (1-512).

ucsl Fi xt ureMake[]; /I Fixture make (only null if omitted).

ucsl Fi xt ureNane[]; /I Fixture name (never omitted).

6.2.2 FPTC / UPtc - Unpatch message

Unpatch messages are sent when fixtures are deleted or unpatched. The unpatch message only contains the
identifiers of the fixtures removed. An empty fixture identifier array indicates complete unpatching..

struct Cl TP_FPTC_UPtc

{
Cl TP_FPTC _Header Cl TPFPTCHeader ; /I The CITP FPTC header. FPTC ContentType
is "UPtc".
uint16 Fi xt ureCount ; /I Fixture count (O to unpatch all).
uint 16 Fi xtureldentifiers[]; /I Fixture identifiers
}

6.2.3 FPTC / SPtc - SendPatch message

The SendPatch message instructs the receiver to send Patch messages in response, one for each fixture
specified in the Fixtureldentifiers array. If no fixture identifiers are specified, the entire Patch should be
transferred in response. This procedure can be used for testing the existence of fixtures on the remote side or to
synchronize the entire patch information..

struct Cl TP_FPTC_SPtc

Cl TP_FPTC Header Cl TPFPTCHeader ; /I The CITP FPTC header. FPTC ContentType
is "SPtc".

uint16 Fi xt ureCount ; /I Fixture count (O to request all).

ui nt 16 Fi xtureldentifiers[]; /I Fixture identifiers.

7. CITP/FSEL, Fixture Selection layer

The Fixture Selection layer is used to carry fixture selection information. Fixture identification is discussed in the
CITP/FPTC section.

7.1 Header definitions

7.1.1 The FSEL header
The FSEL layer provides a standard, single, header used at the start of all FSEL packets:
struct Cl TP_FSEL_Header
{

Cl TP_Header Cl TPHeader ; /I The CITP header. CITP ContentType is "FSEL".
ui nt 32 Cont ent Type; /I A cookie defining which FSEL message it is.

7.2 Message definitions

7.2.1 FSEL / Sele - Select message

The Select message instructs the receive to select a number of fixtures. If the Complete field is non-zero, only
the fixtures identified in the message should be selected and all others should be deselected, thus achieving a
full synchronization.

struct Cl TP_FSEL_Sel e

{
Cl TP_FSEL_Header Cl TPFSELHeader ; /I The CITP FSEL header. FSEL ContentType
is "Sele".
uint8 Conpl et e; /I Set to non-zero for complete selection
uint8 Reserved[1] ; /I 4-byte alignment
uint16 Fi xt ur eCount ; /I Greater than 0
uint 16 Fi xtureldentifiers[]; /I Fixture identifiers
b

7.2.2 FSEL / DeSe - Deselect message

The Deselect message acts similarly to the Select message. However, a Deselect message deselects the fixture
specified, rather than selectin them. A Deselect with no fixture specified should deselect all fixtures.

struct Cl TP_FSEL_DeSe

Cl TP_FSEL_Header Cl TPFSELHeader ; /l The CITP FSEL header. FSEL ContentType
is "DeSe".

ui nt 16 Fi xt ur eCount ; /1 0 for complete deselection

ui nt 16 Fi xtureldentifiers[]; /I Fixture identifiers

8. CITP/FINF, Fixture Information layer

The Fixture Information layer is used to carry additional fixture information. Fixture identification is discussed in
the CITP/FPTC.

8.1 Header definitions

8.1.1 The FINF header

The FINF layer provides a standard, single, header used at the start of all FINF packets:
struct Cl TP_FI NF_Header

{
Cl TP_Header Cl TPHeader ; /I The CITP header. CITP ContentType is "FINF".

ui nt 32 Cont ent Type; /I A cookie defining which FINF message it is.

8.2 Message definitions

8.2.1 FINF / SFra - Send Frames message
This messages informs the receiver to send frame messages for the specified fixtures.

struct Cl TP_FI NF_SFra

{
Cl TP_FI NF_Header Cl TPFI NFHeader ; /I The CITP FINF header. FINF ContentType
is "SFra".
uint16 Fi xt ureCount ; /I Fixture count (O to request all).
uint 16 Fi xtureldentifiers[]; /I Fixture identifiers.
b

8.2.2 FINF / Fram - Frames message

This messages informs the receiver about the filters & gobos of a fixture.

struct Cl TP_FI NF_Fram

Cl TP_FI NF_Header Cl TPFI NFHeader ; /I The CITP FINF header. FINF ContentType
is "Fram".

ui nt 16 Fi xtureldentifier; /I Fixture identifier.

uint8 FranmeFi | t er Count ; /I Number of filters in the FrameNames field.

uint8 Fr ameGoboCount ; /I Number of gobos in the FrameNames field.

ucsl FrameNames[]; /I List of (first) filters and (last) gobos,

newline separated (\n) & null terminated.
Contains at least the null.

8.2.3 FINF / SPos - Send Position message PRELIMINARY
This message informs the receiver to send position messages for the specified fixtures.

struct Cl TP_FI NF_SPos

Cl TP_FI NF_Header Cl TPFI NFHeader ; /I The CITP FINF header. FINF ContentType
is "SPos".

uint16 Fi xt ureCount ; /I Fixture count (O to request all).

uint 16 Fi xtureldentifiers[]; /I Fixture identifiers.

b

8.2.4 FINF / Posi - Position message PRELIMINARY

This message informs the receiver about the position of the specified fixture(s). Coordinates are expressed in

metres.

struct Cl TP_FI NF_Posi

{ Cl TP_FI NF_Header CI_ TPFI l_lFHeader; /I The CITP FINF header. FINF ContentType
ui nt 16 Filitzorsglsosi tionCount; /I The number of FixturePosition blocks.

struct FixturePosition

{

ui nt 16 Fi xtureldentifier; /I Fixture identifier.

fl oat 32 Posi ti onX; /I Position X axis component.
float 32 Posi ti onY; /I Position Y axis component.
fl oat 32 Posi tionz; // Position Z axis component.

H:
H
8.2.5 FINF / LSta - Live status message PRELIMINARY

This message can be sent in any direction on a regular basis. The flag mask and flag fields size is dynamic in
order to allow future expansion without redifinition.

struct CI TP_FINF_LSta

{
Cl TP_FI NF_Header Cl TPFI NFHeader ; /I The CITP FINF header. FINF ContentType
is "LSta".

uint16 Li veSt at usCount ; /I The number of LiveStatus blocks.
uint8 Fl agSi ze; /I Number of bytes in the flag field.
struct LiveStatus
{

ui nt 16 Fi xtureldentifier; /I Fixture identifier.

uint8 FI agMask[Fl agSi ze] ; /I Flag mask.

uint8 FI ags[Fl agSi ze] ; Il Flags.

/I 0x01 TBD

H

9. CITP/OMEX, Operations Management layer
PRELIMINARY

The Operations Management EXtensions layer is used for metadata communication.

9.1 Header definitions
The OMEX layer provides a standard, single, header used at the start of all OMEX packets:

struct Cl TP_OVEX Header

{
Cl TP_Header Cl TPHeader ; /I CITP header. CITP ContentType is "OMEX".
uint8 Ver si onMaj or; /I Set to 1.
uint8 Ver si onM nor; /I Set to 0.
ui nt 32 Cont ent Type; /I Cookie defining which OMEX message it is.
b

9.2 Message definitions: DMX device status signalling

Status signalling of DMX devices is

9.2.1 OMEX / SDDS - Signal DMX Device Status

Sent to signal a status for one or more devices. A status is identified by a short string which is used again when
clearing or updating the status (by sending a new SDDS message). It is typically a short string, such as "Offline",
"On fire" or "Lamp fail".

struct Cl TP_OVEX_ SDDS

{
Cl TP_OVEX_Header Cl TPOVEXHeader ; /I CITP OMEX header. OMEX ContentType
is "SDDS".
ucs?2 Statusldentifier[]; /Il Displayable status tag.
uint8 Severity; /I 50 = Info, 100 = Warning, 150 = Error
ucs?2 Cat egory[]; /I Category identifier.
ucs?2 Short Text[]; /I Short descriptive text.
ucs?2 LongText[]; /I Long descriptive text.
uint16 Devi ceCount ; /I The number of following device information
blocks for which to set this status.
struct Devicel nformation
{
ucsl DMXConnectionStri ng; /I A DMX connection string.
b
b

9.2.2 OMEX / CDDS - Clear DMX Device Status

Sent to clear a specific status from a set of devices. It is not necessary that the status is cleared from all deviced
that have it set, but it is possible. If a status clear is requested for a device that is not known to have status, the
request is silently ignored.

struct Cl TP_OVEX_CDDS

{

Cl TP_OVEX_Header Cl TPOVEXHeader ; /I CITP OMEX header. OMEX ContentType
is "CDDS".

ucs?2 Statusldentifier[]; /I Displayable status tag.

ui nt 16 Devi ceCount ; /I The number of following device information
blocks.

struct Devicel nformation

{

ucsl DMXConnect i onStri ng; /I A DMX connection string.
}i

10. CITP/MSEX, Media Server Extensions layer

The Media Server EXtensions layer is used for communication with Media Servers.

For information about how peers find eachother and connect, see the Connectivity section. Typically all packets
are sent over a peer-to-peer TCP socket connection, except for the MSEX/StFr message which is sent over the
multicast address for all to process.

MSEX Versions

Currently acknowledged versions of MSEX are 1.0, 1.1 and 1.2. During a session, the appropriate MSEX version
that is common to both sides must be established and used for all communication - different versions cannot be
mixed in a single session. See the MSEX/SInf and MSEX/CInf messages also regarding supported version
signalling.

Prior to MSEX 1.2 it was expected that all client and server implementations check the MSEX version of all
received messages to ensure that the message format is acceptable. Starting with MSEX 1.2 this is a mandatory
requirement.

There is no requirement for an implementation of a specific MSEX version to support any previous MSEX
versions, for this reason the version returned by the MSEX/SInf message must be used for all communication by
both sides.

Establishing communications

Prior to MSEX 1.2, a media server was expected to send a MSEX/SInf Server Information message immediately
after connecting to a lighting console or visualiser. This approach has the drawback that the MSEX/SInf message
format has to be fixed since the media server is unaware of what MSEX version(s) the other side supports.
Starting with MSEX 1.2, the lighting console or visualiser must send a MSEX/CInf Client Information message to
the server immediately after connecting, and the server will respond with a version 1.2 or later MSEX/SInf
message.

NB: Although the MSEX/CInf message format must be fixed, provision has been made to allow extra data to be
appended as a future-proofing measure.

Highest Common MSEX Version

For MSEX 1.2 and later, the server must establish the Highest Common MSEX Version when a MSEX/CInf is
received from a newly connected lighting console or media server. This is the highest MSEX version that is
supported on both sides, and must be used for all unsolicited messages, such as MSEX/SInf, MSEX/LSta and
MSEX/ELUp. The Highest Common MSEX Version is at least 1.2.

Mandatory messages

Implementations can choose to implement a subset of MSEX messages to suit their needs, but some messages
are essential for correct interoperation and are marked as mandatory. The mandatory messages are:

ClInf - Client Information message

SInf - Server Information message
LSta - Layer Status message

Nack - Negative acknowledge message

PO

Image formats
MSEX supports three image formats for thumbnail and video stream frames;

® RGBS - a raw array of 8-byte RGB triples (this is not BMP). In MSEX 1.0 the byte order was BGR, but
from MSEX 1.1 the byte order is RGB.

® PNG - the well known file format.

® JPEG - the well known file format (which does not include EXIF).

10.1 Header definitions

10.1.1 The MSEX header
The MSEX layer provides a standard, single, header used at the start of all MSEX packets:

struct Cl TP_MSEX Header
{

Cl TP_Header Cl TPHeader ; /I CITP header. CITP ContentType is "MSEX".

uint8 Ver si onMgj or ; /I See below.
uint8 Ver si onM nor; /I See below.
ui nt 32 Cont ent Type; /I Cookie defining which MSEX message it is.

}s

The ContentType cookie identifies the specific MSEX message type (e.g. "GETh" for Get Element Thumbnail
etc.). If an implementation receives a message with an unrecognised cookie it must silently discard the message
and not treat this as an error condition. This is to allow the specification to continue to evolve over time.

10.2 Message definitions: Communication establishment

10.2.1 MSEX / CInf - Client Information message

The Client Information message advises the media server of which versions of MSEX are supported by the
client. This message is mandatory and must be sent by the client to the media server immediately after
establishing a connection. The media server will examine the list of supported versions and establish the Highest
Common MSEX Version defined above.

struct Cl TP_MSEX_ Cl nf
{

Cl TP_MSEX_Header Cl TPMSEXHeader ; /1 CITP MSEX header. MSEX ContentType is
"CInf". Version is 1.2.

uint8 Suppor t edMSEXVer si onsCount ; /1 Number of following MSEX version pairs.

ui nt 16 Suppor t edMSEXVer si ons[]; /| Each 2 byte value is MSB = major MSEX version,
LSB = minor MSEX version.

ui nt Fut ur eMessageDat a[] ; /1 A hint that future versions of this message

may contain trailing data.

b

Note: The format of this message up to FutureMessageData cannot be changed in future versions of MSEX,
since the client does not yet know which versions the media server will understand. Future versions can be
defined however, but they must preserve the format of the previous version and only insert new fields
immediately before the FutureMessageData field.

10.2.2 MSEX / SInf - Server Information message

The Server Information message provides the receiver with product and layer information. This message is
mandatory. If the media server supports MSEX 1.0 or 1.1, it should send the v1.0 SInf message immediately after
accepting an incoming connection from a lighting console or visualiser. If the media server supports MSEX 1.2 or
later, it must send a SInf message in response to a MSEX/CInf message received from the connected client, and
the format of that SInf message must match the Highest Common MSEX Version.

struct C TP_MSEX 1.0_SI nf
{

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "SInf". Version is set to 1.0.

ucs?2 Product Nane[] ; /I Display name of the product.
uint8 Product Ver si onMaj or; /I Major version number of the product.
uint8 Product Ver si onM nor ; /I Minor version number of the product.
uint8 Layer Count ; /l Number of following layer information blocks.
struct LayerInformation
{

ucsl DMXSour ce[] ; /I DMX-source connection string. See DMX

Connection Strings in Definitions
H

A MSEX 1.2 or later version of the MSEX/SInf message is sent in response to a MSEX/CInf Client Information
message received from the lighting console or visualiser. The MSEX version used for this message is the
Highest Common MSEX Version (described in under MSEX Versions, above).

Cl TP_MBEX_1. 2_SI nf

Cl TP_MSEX_Header Cl TPMSEXHeader ; /| CITP MSEX header. MSEX ContentType is "SInf".
Version is at least 1.2 and is the highest common
version supported by both server and client.

ucsl UUI D[36] ; /1 A standard 36 character UUID that uniquely
identifies this media server (see below).

ucs?2 Product Nane[]; /I Display name of the product.

uint8 Pr oduct Ver si onMj or ; /I Major version number of the product.

uint8 Pr oduct Ver si onM nor ; /I Minor version number of the product.

uint8 Pr oduct Ver si onBugf i x; /I Bugfix version number of the product.

uint8 Suppor t edMSEXVer si onsCount ; // Number of following MSEX version pairs.
uint16 Suppor t edMSEXVer si ons[] ; /[Each 2 byte value is MSB = major MSEX version,
LSB = minor MSEX version (see below)

ui nt 16 Suppor t edLi brar yTypes; /I Bit-encoded flagword that identifies which library
types are provided by the media server (e.g. this
would be 1 for Media, 2 for Effects, 4 for Cues etc.).

uint8 Thunbnai | For mat sCount ; /I Number of following thumbnail format cookies

ui nt 32 Thunbnai | Formats[]; /I Must include "RGB8", but can also include "JPEG" and
"PNG " (see below)

uint8 St r eanfor mat sCount ; /I Number of following stream format cookies

ui nt 32 StreanfFormats[]; /I Must include "RGB8", but can also include "JPEG" and
"PNG " (see below)

uint8 Layer Count ; /I Number of following layer information blocks.

struct LayerInformation

{

ucsl DMXSour ce[]; /I DMX-source connection string. See DMX

Connection Strings in Definitions
H

UUID: This is required so that a lighting console can reliably associate cached information (e.g. thumbnails) with
a specific Media Server when starting a new session, in the case where there may be more than 1 of a specific
type of Media Server. The UUID is a string of 36 hexadecimal characters grouped as "XXXXXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX", e.]. "550e8400-e29b-41d4-a716-446655440000"

SupportedMSEXVersions: Media Servers that support a specific version of MSEX are not required to support
all earlier versions, so this identifies which specific versions are provided.

Format arrays: the order that formats are presented in the ThumbnailFormats and StreamFormats arrays can
indicate the Media Server's format preference, the first being the best and the last being the least convenient.

Only the "PNG " format can support transparency and it is recommended that all implementations support this
format.

10.2.3 MSEX / Nack Negative Acknowledge message

The Negative Acknowledge message is sent in response to any unsupported or unrecognised message received
by the Media Server. As with all response messages, the InResponseTo field of the CITP_Header should be set
to the same value as the Requestindex in the corresponding request message. The ReceivedContentType
cookie is a copy of the ContentType field in the CITP_MSEX_Header of the corresponding request message.
This message is mandatory for MSEX 1.2 and later.

struct Cl TP_MSEX Nack

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "Nack" and version is 1.2.
ui nt 32 Recei vedCont ent Type /I MSEX message type of the message being NACKed
(e.g. "GELT" if the Media Server does not
support library thumbnails)
}

10.3 Message definitions: Layer information

10.3.1 MSEX / LSta - Layer Status message

The LayerStatus message is sent at a regular interval (suggestion: 4 times / second) to provide the receiver with
live status information. This message is mandatory.

struct CITP_MSEX_1.0_LSta

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "LSta" and version is 1.0.
uint8 Layer Count ; /I Number of following layer information
blocks.
struct Layer Status
{
uint8 Layer Nunber ; // 0-based layer number, corresponding to
the layers reported in the SInf message.
uint8 Physi cal Qut put ; /I Current physical video output index,
0-based.
uint8 Medi aLi br ar yNunber ; /I Current media library number.
uint8 Medi aNunber ; /I Current media number.

ucs?2 Medi aNane[] ; /I Current media name.

ui nt 32 Medi aPosi tion; /I Current media position (in frames).

ui nt 32 Medi aLengt h; /I Current media length (in frames).
uint8 Medi aFPS; /I Current media resolution in frames per
second.
ui nt 32 Layer St at usFl ags; /I Current layer status flags
/Il 0x0001 MediaPlaying
TS
b
struct CITP_MSEX_1.2_LSta
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "LSta" and version is 1.2.
uint8 Layer Count ; /I Number of following layer information
blocks.
struct Layer Status
{
uint8 Layer Nunber ; // 0-based layer number, corresponding to
the layers reported in the SInf message.
uint8 Physi cal Qut put ; /I Current physical video output index,
0-based.
uint8 Medi aLi braryType; /I Library content type.
MSEXLi braryld Medi aLi braryl d; /I Current media library ID. (defined later in
this specification)
uint8 Medi aNunber ; /I Current media number.
ucs?2 Medi aNane[] ; /I Current media name.
ui nt 32 Medi aPosi ti on; /I Current media position (in frames).
ui nt 32 Medi aLengt h; /I Current media length (in frames).
uint8 Medi aFPS; /I Current media resolution in frames per
second.
ui nt 32 Layer St at usFl ags; /I Current layer status flags

/Il 0x0001 MediaPlaying
/I 0x0002 MediaPlaybackReverse
/I 0x0004 MediaPlaybackLooping
/I 0x0008 MediaPlaybackBouncing
/I 0x0010 MediaPlaybackRandom
/I 0x0020 MediaPaused

H

10.4 Message definitions: Element libraries and element information

In MSEX 1.0, there is a finite set of at most 256 libraries, each containing a finite set of at most 256 elements.
This is designed to match the common media server layout of 2 dmx channels identifying the library and item
respectively.

In MSEX 1.1 however, there is a finite set of at most 3 library levels with at most 256 elements each. Libraries
are identified using a library identifier, a 4-byte integer divided into four 1-byte fields. When it's Level byte is set to
0, it is specifying the builtin root level, the parent of all first level libraries.

MSEX 1.0 and 1.1 suffer from a limitation imposed by using a uint8 to represent the LibraryCount and
ElementCount values. MSEX 1.2 has removed this limitation by using a uint16 for these numbers, thus allowing
library/element counts of up to the prescribed maximum of 256 to be reported.

Beginning with MSEX 1.2, element and library numbers are explicitly defined as being 0-based contiguous index
values. E.g. if an element library is reported as containing 10 elements, those element numbers will be 0 thru 9.

Prior to MSEX 1.2 the intention was the same, but the specification had been unclear: some implementations of
MSEX 1.0 and 1.1 do not honor this pattern and allow for non-continuous library and element

identifiers/numbers.
struct MSEXLibraryld
{
uint8 Level ; /10-3
uint8 Level 1; /I Sublevel 1 specifier, when Depth >=1.
uint8 Level 2; /I Sublevel 2 specifier, when Depth >= 2.
uint8 Level 3; /I Sublevel 3 specifier, when Depth == 3.
H

Levell, Level2 and Level3 above are 0-based contiguous indexes for MSEX 1.2.
An attempt to visualize by example the most traditional structure, two levels:

/ Root Fol der (abstract) 1D{0,0,O0, 0}
/1 mages 1D{1,0,0,0}
/Primo.gif ID{2,0,0,0}
/ Secundo. gi f 1D{2,0,1, 0}
/Tertio.gif 1D{2,0,2,0}
/Movies 1D{1,1,0,0}

/One.nmpg 1D{2,1,0,0}
/ Two. npg 1 D{2,1,1,0}
/| Three.avi 1D{2,1, 2,0}
/Enpty folder 1D{1,2,0,0}
/ Enpty folder 1D{1,3,0,0}
/ More Movies 1D{1,4,0,0}
/ Test. npg 1 D{2, 4,0, 0}
/| Test2.avi 1D{2,4,1,0}

There are currently eight recognized elements types (a library can only contain elements of one type) and when
information about elements is requested, different kinds of Element Information messages (Media, Effect or
Generic) are returned:

Media (images & video)
Effects

Cues

Crossfades

Masks

Blend presets

Effect presets

Image presets

NG A~MwWD R

Change Detection

From MSEX 1.2, SerialNumber fields are included in all Element Library Information and Element Information
messages. When a Media Server updates an item, that item's SerialNumber is incremented along with the
SerialNumber of all parent nodes. E.g. in the above example, if Test2.avi is changed to some different media, the
corresponding Media Element Information returned for the new item will have it's SerialNumber incremented, as
will the SerialNumber for /More Movies. The Media Server should maintain SerialNumber values between
sessions, so that previously connected clients can revalidate their cached information when they re-connect with
the Media Server.

DMX Ranges

These value pairs identify the range of values that need to be sent over the corresponding DMX channel in order
to select the relevant library or element. If a library contains the maximum 256 elements or sub-libraries, then
each element will contain (0,0), (1,1), (2,2) etc. Some Media Servers may choose to distribute fewer elements
over the available value range to make selection via an encoder wheel or fader easier. E.g. if a Media Server's
media library contains only 10 subfolders, these might be assigned DMX ranges of (0,25), (26,50), (51,75) etc.
which would evenly distribute the 10 folders across the full range.

10.4.1 MSEX / GELI - Get Element Library Information message

The GetElementLibrarylnfo message is sent to a media server in order to request information about an
element library, or all available element libraries.

struct C TP_MSEX_1.0_GELI
{

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GELI" and version is 1.0.

uint8 Li braryType; /I Content type requested.

uint8 Li brar yCount ; /I Number of libraries requested, set to
0 when requesting all available.

uint8 Li braryNunmbers[]; /I Requested library numbers, none if

LibraryCount is 0.
b

struct C TP_MSEX_1.1_GELI
{

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GELI" and version is 1.1.

uint8 Li braryType; /I Content type requested.

MBEXLi braryl d Li braryParent | d; /l Parent library id.

uint8 Li braryCount ; /I Number of libraries requested, set to
0 when requesting all available.

uint8 Li braryNunmbers[]; /I Requested library numbers, none if

LibraryCount is 0.
H

The MSEX 1.2 version of this message uses a uint16 for LibraryCount to avoid the limitation described in
"Message Definitions: Element libraries and element information™:

struct C TP_MSEX 1.2 GELI

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GELI" and version is 1.2.

uint8 Li braryType; /I Content type requested.

MSEXLi braryld Li braryParent|d; /Il Parent library id.

ui nt 16 Li brar yCount ; /I Number of libraries requested, set to
0 when requesting all available.

uint8 Li braryNunbers[]; /I Requested library numbers, none if

LibraryCount is 0.
b

Example 1: two DMX channel media selection media server. A GELI message with LibraryParentld set to {0, 0, O,
0} is sent to retrieve all libraries on the folder selection channel. This generates a response with an ELIn
message with at most 256 items with Libraryld values of {1, 0-256, 0, 0}.

Example 2: three DMX channel media selection media server. First the procedure in Example 1 is executed to
collect all Level 1 libraries (none of these will contain any elements, but up to 256 sub libraries). For each N of
these (up to 256) libraries, an additional GELI message is sent with the LibraryParentld set to {1, N, 0, 0}. This
will trigger a response with an ELin message with at mosts 256 items with Libraryld values of {2, N, 0-256, 0}.

Note: Prior to MSEX 1.2 there is a limitation caused by the use of a uint8 to represent the library/element count,
in which case the above examples can report at most 255 libraries and 255 elements within a library. See
"Message definitions: Element libraries and element information", above

10.4.2 MSEX / ELIn - Element Library Information message

The ElementLibrarylnfo message is sent in response to the GetElementLibrarylnfo message. It should contain
individual element library information for the entire contents of the requested element library.

struct CI TP_VMSEX_ 1.0_ELIn

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "ELIn" and version is 1.0.
uint8 Li braryType; /I Content type requested.
uint8 Li brar yCount ; /I Number of following element library
information blocks.
struct El enmentLi braryl nformation
{
uint8 Nunber ; /I 0-based library number.
uint8 DMXRangeM n; /l DMX range start value.
uint8 DVXRangeMax; / DMX range end value.
ucs?2 Nane[]; /I Library name.
uint8 El enent Count ; /I Number of elements in the library.
TS
s
struct CITP_MSEX_1.1_ELIn
{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "ELIn" and version is 1.1.
uint8 Li braryType; /I Content type requested.
uint8 Li braryCount ; /I Number of following element library
information blocks.
struct El enmentLibraryl nformation
{
MSEXLi braryld 1d; /I Library id.
uint8 DMXRangeM n; /l DMX range start value.
uint8 DMXRangeMax; /l DMX range end value.
ucs?2 Nanme[]; /I Library name.
uint8 Li braryCount ; /I Number of sub libraries
in the library.
uint8 El enent Count ; /I Number of elements in the library.
TS
}

The MSEX 1.2 version of this message uses a uint16 for LibraryCount & ElementCount to avoid the limitation
described in "Message Definitions: Element libraries and element information™:

struct G TP_MBEX_ 1.2 ELIn

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "ELIn" and version is 1.2.

uint8 Li braryType; /I Content type requested.

uint16 Li braryCount ; /I Number of following element library

information blocks.
struct El enmentLibraryl nformation

MSEXLi braryld 1d; /I Library id.
ui nt 32 Seri al Nunber ; /I See below
uint8 DVXRangeM n; /l DMX range start value.
uint8 DVXRangeMax; / DMX range end value.
ucs?2 Nanme[]; /I Library name.
ui nt 16 Li braryCount ; /I Number of sub libraries
in the library.
ui nt 16 El ement Count ; /l Number of elements in the library.

1
}s

SerialNumber: this field is used to detect changes to an element library. See Change Detection above.

10.4.3 MSEX / ELUp - Element Library Updated message

The ElementLibraryUpdated message is sent by a media server to notify a console or visualizer about updated

media library contents.

struct

{
Cl TP_MSEX_Header

Cl TP_MBEX_1.0_ELUp

Cl TPMSEXHeader ;
is "ELUp" and version is 1.0.

/I CITP MSEX header. MSEX ContentType

uint8 Li braryType; /I Content type of updated library.
uint8 Li brar yNunber ; /I Library that has been updated.
uint8 Updat eFl ags; /I Additional information flags.
/I 0x01 Existing elements have been
updated
/I 0x02 Elements have been added or
removed
// 0x04 Sub libraries have been updated
// 0x08 Sub libraries have been added or removed
b
struct CITP_MSEX 1.1 _ELUp
{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "ELUp" and version is 1.1.
uint8 Li braryType; /I Content type of updated library.
MSEXLi braryld Li braryl d; /I Library that has been updated.
uint8 Updat eFl ags; /I Additional information flags.
/I 0x01 Existing elements have been
updated
/[0x02 Elements have been added or
removed
// 0x04 Sub libraries have been updated
// 0x08 Sub libraries have been added or removed
}s
struct CITP_MSEX 1.2 _ELUp
{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "ELUp" and version is 1.2.
uint8 Li braryType; /I Content type of updated library.
MSEXLi braryld Li braryl d; /I Library that has been updated.
uint8 Updat eFl ags; /I Additional information flags.
/I 0x01 Existing elements have been updated
/I 0x02 Elements have been added or removed
// 0x04 Sub libraries have been updated
/I 0x08 Sub libraries have been added or removed
// 0x10 All elements have been affected
(ignore AffectedElements)
/I 0x20 All sub libraries have been affected
(ignore AffectedLibraries)
Affectedl tems Af f ect edEl enent s; /l Which elements have been affected
Affectedl tems Af f ect edLi brari es; /I Which sub-libraries have been affected
b

The MSEX 1.2 (and later) version of ELUp contains extra detail to identify which elements and/or sublibraries
have been changed.

struct Affectedltens

{

uint8 ItenBet[32]; /I A set of 256 bits used to indicate which item
numbers have been changed

I

E.g. the following test will be true if the element or library indexed by ItemIndex has changed:

ItenBet[Item ndex / 8] & (1 << (lItem ndex % 8))

10.4.4 MSEX / GEIn - Get Element Information message

The GetElementinformation message is sent by a console or visualizer to a media server in order to request
information about individual elements.

struct C TP_MSEX_1.0_CEln

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GEIn" and version is 1.0.
uint8 Li braryType; /I Content type requested.
uint8 Li br ar yNumber ; /I Library for which to retrieve element info.
uint8 El enent Count ; /I Number of elements for which information
is requested, set to 0 when requesting
all available.
uint8 El ement Nunbers[]; /I Numbers of the elements for which
information is requested.
b
struct CITP_MSEX_1.1_CEln
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GEIn" and version is 1.1.
uint8 Li braryType; /I Content type requested.
MSEXLi braryld Li braryl d; /I Library for which to retrieve elements
uint8 El enent Count ; /I Number of elements for which information
is requested, set to 0 when requesting
all available.
uint8 El ement Nunbers[]; /I Numbers of the elements for which

information is requested.

I

The MSEX 1.2 version of this message uses a uint16 for ElementCount to avoid the limitation described in
"Message Definitions: Element libraries and element information™:

struct C TP_MSEX_1.2_CEln

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GEIn" and version is 1.1.
uint8 Li braryType; /I Content type requested.
MSEXLi braryld Li braryl d; /I Library for which to retrieve elements
ui nt 16 El enent Count ; /I Number of elements for which information
is requested, set to 0 when requesting
all available.
uint8 El ement Nunbers[]; /l Numbers of the elements for which
information is requested.
b

10.4.5 MSEX / MEIn - Media Element Information message

The MediaElementinformation message is sent in response to the GetElementinformation message for element
type 1. It should contain individual media element information for all elements requested.

struct CI TP_MSEX_ 1.0_MEln

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "MEIn" and version is 1.0.
uint8 Li br ar yNumber ; /I Library containing the media elements.
uint8 El enent Count ; /I Number of following (media) information
blocks.
struct Medial nformation
{
uint8 Nunber ; /I 0-based number of the media.
uint8 DVXRangeM n; /l DMX range start value.
uint8 DVXRangeMax; /l DMX range end value.
ucs?2 Medi aNane[] ; /I Media name.
ui nt 64 Medi aVer si onTi nmest anp; /I Media version in seconds since
1st January 1970.
ui nt 16 Medi aW dt h; /I Media width.
ui nt 16 Medi aHei ght ; /I Media height.
ui nt 32 Medi aLengt h; /I Media length (in frames).
uint8 Medi aFPS; /I Media resolution (in frames per second).
HD:
H

struct CITP_MSEX 1.1 MEln

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType

MBEXLi braryl d
uint8

is "MEIn" and version is 1.1.
Li braryl d;
El ement Count ;

blocks.

struct Medi al nformation

{

uint8
uint8
uint8
ucs?2

ui nt 64

ui nt 16
ui nt 16
ui nt 32
uint8
1
b

Nunber ;

DMXRangeM n;

DMXRangeMax;

Medi aNane[] ;

Medi aVer si onTi nmest anp;
1st January 1970.

Medi aW dt h;

Medi aHei ght ;

Medi aLengt h;

Medi aFPS;

/I Library containing the media elements.
/I Number of following (media) information

/I 0-based number of the media.
// DMX range start value.

/Il DMX range end value.

/I Media name.

/I Media version in seconds since

/I Media width.

/I Media height.

/I Media length (in frames).

/I Media resolution (in frames per second).

The MSEX 1.2 version of this message uses a uint16 for ElementCount to avoid the limitation described in
"Message Definitions: Element libraries and element information":

struct

{
Cl TP_MSEX_Header

MBEXLi braryl d
ui nt 16

Cl TP_MBEX_1.2_MEI n

Cl TPMSEXHeader ;

is "MEIn" and version is 1.1.
Li braryl d;
El ement Count ;

blocks.

struct Medi al nformation

{

uint8
ui nt 32
uint8
uint8
ucs?2
ui nt 64

ui nt 16
ui nt 16
ui nt 32
uint8
s
}s

Nunber ;
Seri al Nunber ;
DMXRangeM n;
DMXRangeMax;
Medi aNane[] ;
Medi aVer si onTi nmest anp;
1st January 1970.
Medi aW dt h;
Medi aHei ght ;
Medi aLengt h;
Medi aFPS;

/I CITP MSEX header. MSEX ContentType

/Il Library containing the media elements.
/I Number of following (media) information

/l 0-based contiguous index of the media.
/I See below

/l DMX range start value.

/ DMX range end value.

/I Media name.

/I Media version in seconds since

/I Media width.

/I Media height.

/I Media length (in frames).

/I Media resolution (in frames per second).

SerialNumber: this field is used to detect changes to an element within a library. See Change Detection above.

10.4.6 MSEX / EEIn - Effect Element Information message

The EffectElementinformation message is sent in response to the GetElementinformation message for element
type 2. It contains individual effect element information for all elements requested.

struct C TP_MSEX_1.0_EEIn
{
Cl TP_MSEX_Header Cl TPMSEXHeader ;
is "EEIn" and version is 1.0.
uint8 Li brar yNunber ;
uint8 El ement Count ;
blocks.
struct Effectlnformation
{
uint8 El ement Nunber ;
uint8 DMXRangeM n;
uint8 DMXRangeMax;
ucs?2 Ef f ect Nane[] ;
uint8 Ef f ect Par anet er Count ;
parameter names.
ucs?2 Ef f ect Par amet er Names[][];
s
b
struct CITP_MSEX 1.1 _EEln

Cl TP_MSEX_Header

MBEXLi braryl d
uint8

Cl TPMSEXHeader ;

is "EEIn" and version is 1.1.
Li braryl d;
El ement Count ;

blocks.

struct Effectlnformation

{

/I CITP MSEX header. MSEX ContentType

/I Library containing the effect elements.
/I Number of following (effect) information

/I 0-based number of the effect.
/l DMX range start value.

/l DMX range end value.

/I Effect name.

/I Number of following effect

/I List of effect parameter names.

/I CITP MSEX header. MSEX ContentType

/I Library containing the effect elements.
/I Number of following (effect) information

uint8 El enent Nunber ;

uint8 DMXRangeM n;

uint8 DMXRangeMax;

ucs?2 Ef f ect Name[];

uint8 Ef f ect Par anmet er Count ;
parameter names.

ucs?2 Ef f ect Par amet er Names[][];

s
b

/I 0-based number of the effect.
/l DMX range start value.

/l DMX range end value.

/I Effect name.

/I Number of following effect

/I List of effect parameter names.

The MSEX 1.2 version of this message uses a uint16 for ElementCount to avoid the limitation described in
"Message Definitions: Element libraries and element information™:

struct

{

Cl TP_MBEX_1.2_EEIn

Cl TP_MSEX_Header Cl TPMSEXHeader ;

is "EEIn" and version is 1.1.

MBEXLi braryl d Li braryl d;
uint16 El ement Count ;
blocks.
struct Effectlnformation
{
uint8 El ement Nunber ;
ui nt 32 Seri al Nunber;
uint8 DMXRangeM n;
uint8 DMXRangeMax;
ucs?2 Ef f ect Nare[];
uint8 Ef f ect Par anet er Count ;
parameter names.
ucs?2 Ef f ect Paramet er Names[][];
S

I

/I CITP MSEX header. MSEX ContentType

/I Library containing the effect elements.
/I Number of following (effect) information

/I 0-based contiguous index of the effect.
/I See below

/l DMX range start value.

/Il DMX range end value.

/I Effect name.

/I Number of following effect

/I List of effect parameter names.

SerialNumber: this field is used to detect changes to an element within a library. See Change Detection above.

10.4.7 MSEX / GLEI - Generic Element Information message

The GenericElementinformation message is sent in response to the GetElementinformation message for
element types 3 through 8. It contains individual element information for all elements requested.

struct C TP_MSEX 1.1 _GLEI

/I CITP MSEX header. MSEX ContentType

/I Library containing the elements.
/I Number of following information

/I 0-based number of the element.
/l DMX range start value.

/l DMX range end value.

/I Element name.

/I Element version in

seconds since 1st January 1970.

{
Cl TP_MSEX_Header Cl TPMSEXHeader ;
is "GLEI" and version is 1.1.
MSEXLi braryld Li braryl d;
uint8 El ement Count ;
blocks.
struct Genericlnformation
{
uint8 El emrent Nunber ;
uint8 DMXRangeM n;
uint8 DVXRangeMax;
ucs?2 Nanme[];
ui nt 64 Ver si onTi nest anp;
s
I

Note: The MSEX 1.1 version of this message lacks a field indicating which library type the contained information
belongs to (which is not necessary with the MEIn and EEIn messages since each is for a particular library type).
The MSEX 1.2 version of this message defined below corrects this problem, as well as ElementCount limitation

described in "Message Definitions: Element libraries and element information™:

struct

{

Cl TP_MBEX_1.2_GLEl

Cl TP_MSEX_Header Cl TPMSEXHeader ;

is "GLEI" and version is 1.1.

/I CITP MSEX header. MSEX ContentType

uint8 Li braryType; /I Library content type.
MBEXLi braryl d Li braryl d; /Il Library containing the elements.
uint16 El ement Count ; /I Number of following information
blocks.
struct Genericlnformation
{
uint8 El enent Nunber ; /I 0-based contiguous index of the element.
ui nt 32 Seri al Nunber ; /I See below
uint8 DMXRangeM n; /l DMX range start value.
uint8 DMXRangeMax; /l DMX range end value.
ucs?2 Nanme[]; /I Element name.
ui nt 64 Ver si onTi nest anp; /I Element version in

seconds since 1st January 1970.
S
b

SerialNumber: this field is used to detect changes to an element within a library. See Change Detection above.
10.5 Message definitions: Thumbnail information

10.5.1 MSEX / GELT - Get Element Library Thumbnail message

The GetElementLibraryThumbnail message is sent to a media server in order to retrieve a thumbnail of an
element library, or of all available element libraries.

struct C TP_MSEX 1.0 GELT

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GELT" and version is 1.0.
ui nt 32 Thurnbnai | For nat ; /I Format of the thumbnail.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).
uint16 Thunbnai | W dt h; /I Preferred thumbnail image width.
uint16 Thunbnai | Hei ght ; /I Preferred thumbnail image height.
uint8 Thunbnai | Fl ags /I Additional information flags.
/I 0x01 Preserve aspect ratio
of image (use width and height as maximum)
uint8 Li braryType; /I 1 for Media, 2 for Effects.
uint8 Li brar yCount ; /I Number of libraries requested, set to 0
when requesting all available.
uint8 Li braryNunbers[]; /I Numbers of the libraries requested, not present
if LibraryCount is 0.
}
struct CITP_MSEX 1.1 GELT
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GELT" and version is 1.1.
ui nt 32 Thunbnai | For nat ; /I Format of the thumbnail.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).
ui nt 16 Thurbnai | W dt h; /I Preferred thumbnail image width.
ui nt 16 Thurbnai | Hei ght ; /I Preferred thumbnail image height.
uint8 Thurbnai | Fl ags /I Additional information flags.

/I 0x01 Preserve aspect ratio
of image (use width and height as maximum)

uint8 Li braryType; /I 1 for Media, 2 for Effects.

uint8 Li brar yCount ; /I Number of libraries requested, set to 0
when requesting all available.

MSEXLi braryld Li brarylds[]; /I \ds of the libraries requested, not present if

LibraryCount is 0.
s

The MSEX 1.2 version of this message uses a uint16 for LibraryCount to avoid the limitation described in
"Message Definitions: Element libraries and element information™:

struct G TP_MBEX 1.2 GELT

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "GELT" and version is 1.2.
ui nt 32 Thunbnai | For nat ; /I Format of the thumbnail.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).
uint16 Thunbnai | W dt h; /I Preferred thumbnail image width.
uint16 Thunbnai | Hei ght ; /I Preferred thumbnail image height.
uint8 Thurnbnai | Fl ags /I Additional information flags.

/I 0x01 Preserve aspect ratio
of image (use width and height as maximum)

uint8 Li braryType; /I 1 for Media, 2 for Effects.

uint16 Li braryCount ; /I Number of libraries requested, set to O
when requesting all available.

VBEXLi braryl d Li brarylds[]; /'lds of the libraries requested, not present if

LibraryCount is 0.

10.5.2 MSEX/ ELTh - Element Library Thumbnail message
The ElementLibraryThumbnail message is sent in response to the GetElementLibraryThumbnail message.

struct C TP_MSEX_1.0_ELTh

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "ELTh" and version is 1.0.

uint8
uint8

ui nt 32

uint16
uint16
uint16
uint8

b

Li braryType;

/l 1 for Media, 2 for Effects.

Li brar yNunber ; /I Number of the library that
the thumbnail belongs to.

Thunbnai | For mat ;

Can be "RGB8" or "JPEG" (or "
Thunbnai | W dt h;

Thurnbnai | Hei ght ;
Thunbnai | Buf fer Si ze;
Thunbnai | Buf fer;

struct C TP_MBEX_1.1_ELTh

{
Cl TP_MSEX_Header

uint8
MBEXLi braryl d

ui nt 32

uint16
uint16
uint16
uint8

Cl TPVMSEXHeader ;

is "ELTh" and version is 1.1.
Li braryType;

Li braryl d;

belongs to.

Thunbnai | For mat ;

Can be "RGB8" or "JPEG" (or "
Thunbnai | W dt h;
Thunbnai | Hei ght ;
Thunbnai | Buf fer Si ze;
Thunbnai | Buf fer;

/I Format of the thumbnail.
PNG " for MSEX 1.2 and up).
/l Thumbnail width.

/I Thumbnail height.

/I Size of the thumbnail buffer.
/I Thumbnail image buffer.

/I CITP MSEX header. MSEX ContentType

/I 1 for Media, 2 for Effects.
//'1d of the library that the thumbnail

/I Format of the thumbnail.
PNG " for MSEX 1.2 and up).
/I Thumbnail width.

/I Thumbnail height.

/I Size of the thumbnail buffer.
/I Thumbnail image buffer.

10.5.3 MSEX / GETh - Get Element Thumbnail message

The GetElementThumbnail message is sent to a media server in order to retrieve a thumbnail of one or many

library elements..

struct C TP_MSEX_ 1.0 _CETh

{
Cl TP_MSEX_Header

ui nt 32
uint16

uint16
uint8

uint8
uint8
uint8

uint8

}s

Cl TPMSEXHeader ;

is "GETh" and version is 1.0.
Thunbnai | For mat ;

Can be "RGB8" or "JPEG" (or "
Thunbnai | W dt h;

Thunbnai | Hei ght ;
Thunbnai | Fl ags

/I CITP MSEX header. MSEX ContentType

/I Format of the thumbnail.

PNG " for MSEX 1.2 and up).

/I Preferred thumbnail image width.

/I Preferred thumbnail image height.

/I Additional information flags.

// 0x01 Preserve aspect ratio of image

(use width and height as maximum)

Li braryType;
Li brar yNunber ;
El enent Count ;

/I 1 for Media, 2 for Effects.
/I Number of the media's library.
/l Number of medias for which information

is requested, set to 0 when requesting

all available.
El enent Nunbers[];
Not present if ElementCount is

struct CITP_MSEX 1.1 CETh

{
Cl TP_MSEX_Header

ui nt 32
uint16

uint16
uint8

uint8
MSEXLi braryld
uint8

uint8

}s

Cl TPMSEXHeader ;

is "GETh" and version is 1.1.
Thunbnai | For mat ;

Can be "RGB8" or "JPEG" (or "
Thunbnai | W dt h;

Thunbnai | Hei ght ;
Thunbnai | Fl ags

/I The numbers of the requested elements.
0.

/I CITP MSEX header. MSEX ContentType

/I Format of the thumbnail.

PNG " for MSEX 1.2 and up).

/I Preferred thumbnail image width.

/I Preferred thumbnail image height.

/I Additional information flags.

// 0x01 Preserve aspect ratio of image

(use width and height as maximum)

Li braryType;
Li braryl d;
El enent Count ;

/I 1 for Media, 2 for Effects.
/I 1d of the media’s library.
/l Number of medias for which information

is requested, set to 0 when requesting

all available.
El enent Nunbers[];

/I The numbers of the requested elements.

Not present if ElementCount = 0. For MSEX 1.2 these are
0-based contiguous index values.

The MSEX 1.2 version of this message uses a uint16 for ElementCount to avoid the limitation described in
"Message Definitions: Element libraries and element information™:

struct C TP_MSEX_ 1.2 _CETh

{
Cl TP_MSEX_Header

ui nt 32

Cl TPMSEXHeader ;

is "GETh" and version is 1.2.
Thunbnai | For mat ;

Can be "RGB8" or "JPEG" (or "

/I CITP MSEX header. MSEX ContentType

/I Format of the thumbnail.
PNG " for MSEX 1.2 and up).

uint16 Thunbnai | W dt h; /I Preferred thumbnail image width.
uint16 Thunbnai | Hei ght ; /I Preferred thumbnail image height.
uint8 Thunbnai | Fl ags /I Additional information flags.
// 0x01 Preserve aspect ratio of image
(use width and height as maximum)

uint8 Li braryType; /I 1 for Media, 2 for Effects.

MSEXLi braryld Li braryl d; /' 1d of the media’s library.

uint16 El enent Count ; /I Number of medias for which information
is requested, set to 0 when requesting
all available.

uint8 El enent Nunbers[]; /I The numbers of the requested elements.

Not present if ElementCount = 0. For MSEX 1.2 these are
0-based contiguous index values.

10.5.4 MSEX / EThn - Element Thumbnail message
The ElementLibraryThumbnail message is sent in response to the GetElementLibraryThumbnail message.

struct Cl TP_MSEX_1.0_EThn

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "EThn" and version is 1.0.
uint8 Li braryType; /I 1 for Media, 2 for Effects.
uint8 Li br ar yNumber ; /I Number of the element's library.
uint8 El enent Nunber ; /I Number of the element.
ui nt 32 Thurnbnai | For nat ; /I Format of the thumbnail.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).
uint16 Thunbnai | W dt h; /I Thumbnail width.
uint16 Thunbnai | Hei ght ; /I Thumbnail height.
uint16 Thunbnai | Buf fer Si ze; /I Size of the thumbnail buffer.
uint8 Thurnbnai | Buf f er; /I Thumbnail image buffer.
H
struct CI TP_MSEX_ 1.1_EThn
{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "EThn" and version is 1.1.
uint8 Li braryType; /I 1 for Media, 2 for Effects.
MSEXLi braryld Li braryl d; /I 1d of the element's library.
uint8 El enent Nunber ; /I Number of the element (For MSEX 1.2 this
is a 0-based contiguous index value).
ui nt 32 Thunbnai | For nat ; /I Format of the thumbnail.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).
uint16 Thurbnai | W dt h; /I Thumbnail width.
ui nt 16 Thurbnai | Hei ght ; /I Thumbnail height.
ui nt 16 Thurbnai | Buf f er Si ze; /I Size of the thumbnail buffer.
uint8 Thurnbnai | Buf fer; /I Thumbnail image buffer.
b

10.6 Message definitions: Streams

10.6.1 MSEX / GVSr - GetVideoSources
The GetVideoSources message is sent to a media server in order to receive all available video source feeds.
struct Cl TP_MSEX_GVSr
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType

is "GVSr".
I

10.6.2 MSEX / VSrc - Video Sources

The VideoSources message is sent in response to a GetVideoSources message. The PhysicalOutput and
LayerNumber fields can be used for automatic connection to outputs and individual layers (for instance the video
of output 1 would have PhysicalOutput = 0 and LayerNumber = OxFF).

struct Cl TP_MSEX_VSrc

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "VSrc".
ui nt 16 Sour ceCount ; /I Number of following source information
blocks.
struct Sourcel nformation
{

ui nt 16 Sourcel dentifier; /I Source identifier.

ucs?2 Sour ceNane[]; /I Display name of the source (ie "Output 1",
"Layer 2", "Camera 1" etc).

uint8 Physi cal Qut put ; /I If applicable, 0-based index designating
the physical video output index.
Otherwise OxFF.

uint8 Layer Nunber ; /I If applicable, 0-based layer number,
corresponding to the layers reported in
the SInf message. Otherwise OxFF.

uint 16 Fl ags; /I Information flags.

/I 0x0001 Without effects
ui nt 16 W dt h; /I Full width.
ui nt 16 Hei ght ; /I Full height.

10.6.3 MSEX / RgSt - Request Stream message

The RequestStream message is sent by a console or visualizer to a media server in order to create a time limited
subscription of a video source. The media server will not provide multiple resolutions and frame rates of a single
source, but it may provide a feed for each requested format. If different resolutions are requested by multiple
peers, the Media Server should only supply the higher resolution to all peers (any peer should be prepared to
downscale). It is up to the peer to regularly request a stream, based on its timeout parameter, if it wishes receive
a continuous feed. High values of the timeout field is of course discouraged.

struct C TP_MSEX_ RqSt

Cl TP_MSEX_Header Cl TPMSEXHeader ; /I CITP MSEX header. MSEX ContentType
is "RgSt".

ui nt 16 Sour cel dentifier; /I \dentifier of the source requested.

ui nt 32 FraneFor mat ; /I Requested frame format.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).

uint16 FranmeW dt h; /I Preferred minimum frame width.

uint16 FrameHei ght ; /I Preferred minimum frame height.

uint8 FPS; /I Preferred minimum frames per second.

uint8 Ti meout ; /I Timeout in seconds (for instance 5

seconds, 0 to ask for only one frame).

10.6.4 MSEX / StFr - Stream Frame message

The StreamFrame message is multicasted regularly from a media server. The resolutions, formats and FPS are
determine by the current set of subscribing peers.

struct Cl TP_MSEX_ 1.0_StFr

{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I The CITP MSEX header. MSEX ContentType
is "StFr".
uint16 Sour cel dentifier; /I 'dentifier of the frame's source.
ui nt 32 Fr ameFor mat ; /I Requested frame format.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).
ui nt 16 FranmeW dt h; /I Preferred minimum frame width.
ui nt 16 Fr aneHei ght ; /I Preferred minimum frame height.
ui nt 16 FraneBufferSi ze; /I Size of the frame image buffer.
uint8 FrameBuffer[]; /I Frame image buffer.
s

Prior to version 1.1 of MSEX, RGB8 data was transmitted as BGR rather then RGB. As of version 1.1, stream
frames are to be transmitted over the multicast channel only (sames as used by PINF) and never over the TCP

connection.
struct Cl TP_MSEX 1.2_StFr
{
Cl TP_MSEX_Header Cl TPMSEXHeader ; /I The CITP MSEX header. MSEX ContentType
is "StFr".
ucsl Medi aSer ver UUI D] 36] ; /I Source media server UUID, see below.
uint16 Sour cel dentifier; /I dentifier of the frame's source.
ui nt 32 Fr ameFor mat ; /I Requested frame format.
Can be "RGB8" or "JPEG" (or "PNG " for MSEX 1.2 and up).
ui nt 16 FranmeW dt h; /I Preferred minimum frame width.
ui nt 16 Fr aneHei ght ; /I Preferred minimum frame height.
ui nt 16 FraneBufferSi ze; /I Size of the frame image buffer.
uint8 FranmeBuffer[]; /I Frame image bulffer.
}

As of version 1.2, the source media server UUID was added as a means of distinguishing incoming stream
frames from different media servers on the same IP address.

